Arrays are ordered, integer-indexed collections of any object. Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.
Returns a new array populated with the given objects.
Array.[]( 1, 'a', /^A/ ) Array[ 1, 'a', /^A/ ] [ 1, 'a', /^A/ ]
static VALUE rb_ary_s_create(argc, argv, klass) int argc; VALUE *argv; VALUE klass; { VALUE ary = ary_alloc(klass); if (argc > 0) { RARRAY(ary)->ptr = ALLOC_N(VALUE, argc); MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc); } RARRAY(ary)->len = RARRAY(ary)->aux.capa = argc; return ary; }
Returns a new array. In the first form, the new array is empty. In the second it is created with size copies of obj (that is, size references to the same obj). The third form creates a copy of the array passed as a parameter (the array is generated by calling #to_ary on the parameter). In the last form, an array of the given size is created. Each element in this array is calculated by passing the element's index to the given block and storing the return value.
Array.new Array.new(2) Array.new(5, "A") # only one copy of the object is created a = Array.new(2, Hash.new) a[0]['cat'] = 'feline' a a[1]['cat'] = 'Felix' a # here multiple copies are created a = Array.new(2) { Hash.new } a[0]['cat'] = 'feline' a squares = Array.new(5) {|i| i*i} squares copy = Array.new(squares)
static VALUE rb_ary_initialize(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long len; VALUE size, val; rb_ary_modify(ary); if (rb_scan_args(argc, argv, "02", &size, &val) == 0) { RARRAY(ary)->len = 0; if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > ARY_MAX_SIZE) { rb_raise(rb_eArgError, "array size too big"); } if (len > RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, len); RARRAY(ary)->aux.capa = len; } if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; i<len; i++) { rb_ary_store(ary, i, rb_yield(LONG2NUM(i))); RARRAY(ary)->len = i + 1; } } else { memfill(RARRAY(ary)->ptr, len, val); RARRAY(ary)->len = len; } return ary; }
Set Intersection—Returns a new array containing elements common to the two arrays, with no duplicates.
[ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
static VALUE rb_ary_and(ary1, ary2) VALUE ary1, ary2; { VALUE hash, ary3, v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY(ary1)->len < RARRAY(ary2)->len ? RARRAY(ary1)->len : RARRAY(ary2)->len); hash = ary_make_hash(ary2, 0); for (i=0; i<RARRAY(ary1)->len; i++) { v = vv = rb_ary_elt(ary1, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } return ary3; }
Repetition—With a String argument, equivalent to self.join(str). Otherwise, returns a new array built by concatenating the int copies of self.
[ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] [ 1, 2, 3 ] * "," #=> "1,2,3"
static VALUE rb_ary_times(ary, times) VALUE ary, times; { VALUE ary2, tmp; long i, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) return ary_new(rb_obj_class(ary), 0); if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (ARY_MAX_SIZE/len < RARRAY(ary)->len) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY(ary)->len; ary2 = ary_new(rb_obj_class(ary), len); RARRAY(ary2)->len = len; for (i=0; i<len; i+=RARRAY(ary)->len) { MEMCPY(RARRAY(ary2)->ptr+i, RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); } OBJ_INFECT(ary2, ary); return ary2; }
Concatenation—Returns a new array built by concatenating the two arrays together to produce a third array.
[ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
VALUE rb_ary_plus(x, y) VALUE x, y; { VALUE z; long len; y = to_ary(y); len = RARRAY(x)->len + RARRAY(y)->len; z = rb_ary_new2(len); MEMCPY(RARRAY(z)->ptr, RARRAY(x)->ptr, VALUE, RARRAY(x)->len); MEMCPY(RARRAY(z)->ptr + RARRAY(x)->len, RARRAY(y)->ptr, VALUE, RARRAY(y)->len); RARRAY(z)->len = len; return z; }
Array Difference—Returns a new array that is a copy of the original array, removing any items that also appear in other_array. (If you need set-like behavior, see the library class Set.)
[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
static VALUE rb_ary_diff(ary1, ary2) VALUE ary1, ary2; { VALUE ary3; volatile VALUE hash; long i; hash = ary_make_hash(to_ary(ary2), 0); ary3 = rb_ary_new(); for (i=0; i<RARRAY(ary1)->len; i++) { if (st_lookup(RHASH(hash)->tbl, RARRAY(ary1)->ptr[i], 0)) continue; rb_ary_push(ary3, rb_ary_elt(ary1, i)); } return ary3; }
Append—Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.
[ 1, 2 ] << "c" << "d" << [ 3, 4 ] #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
VALUE rb_ary_push(ary, item) VALUE ary; VALUE item; { rb_ary_store(ary, RARRAY(ary)->len, item); return ary; }
Comparison—Returns an integer (-1, 0, or +1) if this array is less than,
equal to, or greater than other_array. Each object in each array is
compared (using <=>). If any value isn't equal, then that
inequality is the return value. If all the values found are equal, then the
return is based on a comparison of the array lengths. Thus, two arrays are
“equal'' according to Array#<=>
if and only if
they have the same length and the value of each element is equal to the
value of the corresponding element in the other array.
[ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
VALUE rb_ary_cmp(ary1, ary2) VALUE ary1, ary2; { long len; VALUE v; ary2 = to_ary(ary2); if (ary1 == ary2) return INT2FIX(0); if (rb_inspecting_p(ary1)) return INT2FIX(0); v = rb_protect_inspect(recursive_cmp, ary1, ary2); if (v != Qundef) return v; len = RARRAY(ary1)->len - RARRAY(ary2)->len; if (len == 0) return INT2FIX(0); if (len > 0) return INT2FIX(1); return INT2FIX(-1); }
Equality—Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object.==) the corresponding element in the other array.
[ "a", "c" ] == [ "a", "c", 7 ] #=> false [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
static VALUE rb_ary_equal(ary1, ary2) VALUE ary1, ary2; { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse; if (rb_inspecting_p(ary1)) return Qfalse; return rb_protect_inspect(recursive_equal, ary1, ary2); }
Element Reference—Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE arg; long beg, len; if (argc == 2) { if (SYMBOL_P(argv[0])) { rb_raise(rb_eTypeError, "Symbol as array index"); } beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY(ary)->len; } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } if (SYMBOL_P(arg)) { rb_raise(rb_eTypeError, "Symbol as array index"); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY(ary)->len, 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Element Assignment—Sets the element at index, or replaces a
subarray starting at start and continuing for length
elements, or replaces a subarray specified by range. If indices
are greater than the current capacity of the array, the array grows
automatically. A negative indices will count backward from the end of the
array. Inserts elements if length is zero. If nil
is
used in the second and third form, deletes elements from self. An
IndexError
is raised if a negative index points past the
beginning of the array. See also Array#push
, and
Array#unshift
.
a = Array.new a[4] = "4"; #=> [nil, nil, nil, nil, "4"] a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] a[0, 2] = "?" #=> ["?", 2, nil, "4"] a[0..2] = "A" #=> ["A", "4"] a[-1] = "Z" #=> ["A", "Z"] a[1..-1] = nil #=> ["A"]
static VALUE rb_ary_aset(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long offset, beg, len; if (argc == 3) { if (SYMBOL_P(argv[0])) { rb_raise(rb_eTypeError, "Symbol as array index"); } if (SYMBOL_P(argv[1])) { rb_raise(rb_eTypeError, "Symbol as subarray length"); } rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]); return argv[2]; } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc); } if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (SYMBOL_P(argv[0])) { rb_raise(rb_eTypeError, "Symbol as array index"); } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY(ary)->len, 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; }
Searches through an array whose elements are also arrays comparing
obj with the first element of each contained array using obj.==.
Returns the first contained array that matches (that is, the first
associated array), or nil
if no match is found. See also
Array#rassoc
.
s1 = [ "colors", "red", "blue", "green" ] s2 = [ "letters", "a", "b", "c" ] s3 = "foo" a = [ s1, s2, s3 ] a.assoc("letters") #=> [ "letters", "a", "b", "c" ] a.assoc("foo") #=> nil
VALUE rb_ary_assoc(ary, key) VALUE ary, key; { long i; VALUE v; for (i = 0; i < RARRAY(ary)->len; ++i) { v = RARRAY(ary)->ptr[i]; if (TYPE(v) == T_ARRAY && RARRAY(v)->len > 0 && rb_equal(RARRAY(v)->ptr[0], key)) return v; } return Qnil; }
Returns the element at index. A negative index counts from the end
of self. Returns nil
if the index is out of range.
See also Array#[]
. (Array#at
is slightly faster
than Array#[]
, as it does not accept ranges and so on.)
a = [ "a", "b", "c", "d", "e" ] a.at(0) #=> "a" a.at(-1) #=> "e"
static VALUE rb_ary_at(ary, pos) VALUE ary, pos; { return rb_ary_entry(ary, NUM2LONG(pos)); }
Removes all elements from self.
a = [ "a", "b", "c", "d", "e" ] a.clear #=> [ ]
VALUE rb_ary_clear(ary) VALUE ary; { rb_ary_modify(ary); RARRAY(ary)->len = 0; if (ARY_DEFAULT_SIZE * 2 < RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, ARY_DEFAULT_SIZE * 2); RARRAY(ary)->aux.capa = ARY_DEFAULT_SIZE * 2; } return ary; }
Invokes block once for each element of self. Creates a
new array containing the values returned by the block. See also
Enumerable#collect
.
a = [ "a", "b", "c", "d" ] a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(ary) VALUE ary; { long i; VALUE collect; if (!rb_block_given_p()) { return rb_ary_new4(RARRAY(ary)->len, RARRAY(ary)->ptr); } collect = rb_ary_new2(RARRAY(ary)->len); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_push(collect, rb_yield(RARRAY(ary)->ptr[i])); } return collect; }
Invokes the block once for each element of self, replacing the
element with the value returned by block. See also
Enumerable#collect
.
a = [ "a", "b", "c", "d" ] a.collect! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(ary) VALUE ary; { long i; rb_ary_modify(ary); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_store(ary, i, rb_yield(RARRAY(ary)->ptr[i])); } return ary; }
Returns a copy of self with all nil
elements removed.
[ "a", nil, "b", nil, "c", nil ].compact #=> [ "a", "b", "c" ]
static VALUE rb_ary_compact(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; }
Removes nil
elements from array. Returns nil
if
no changes were made.
[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] [ "a", "b", "c" ].compact! #=> nil
static VALUE rb_ary_compact_bang(ary) VALUE ary; { VALUE *p, *t, *end; rb_ary_modify(ary); p = t = RARRAY(ary)->ptr; end = p + RARRAY(ary)->len; while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } if (RARRAY(ary)->len == (p - RARRAY(ary)->ptr)) { return Qnil; } RARRAY(ary)->len = RARRAY(ary)->aux.capa = (p - RARRAY(ary)->ptr); REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->len); return ary; }
Appends the elements in other_array to self.
[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
VALUE rb_ary_concat(x, y) VALUE x, y; { y = to_ary(y); if (RARRAY(y)->len > 0) { rb_ary_splice(x, RARRAY(x)->len, 0, y); } return x; }
Deletes items from self that are equal to obj. If the
item is not found, returns nil
. If the optional code block is
given, returns the result of block if the item is not found.
a = [ "a", "b", "b", "b", "c" ] a.delete("b") #=> "b" a #=> ["a", "c"] a.delete("z") #=> nil a.delete("z") { "not found" } #=> "not found"
VALUE rb_ary_delete(ary, item) VALUE ary; VALUE item; { long i1, i2; for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) { VALUE e = RARRAY(ary)->ptr[i1]; if (rb_equal(e, item)) continue; if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY(ary)->len == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } rb_ary_modify(ary); if (RARRAY(ary)->len > i2) { RARRAY(ary)->len = i2; if (i2 * 2 < RARRAY(ary)->aux.capa && RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) { REALLOC_N(RARRAY(ary)->ptr, VALUE, i2 * 2); RARRAY(ary)->aux.capa = i2 * 2; } } return item; }
Deletes the element at the specified index, returning that element, or
nil
if the index is out of range. See also
Array#slice!
.
a = %w( ant bat cat dog ) a.delete_at(2) #=> "cat" a #=> ["ant", "bat", "dog"] a.delete_at(99) #=> nil
static VALUE rb_ary_delete_at_m(ary, pos) VALUE ary, pos; { return rb_ary_delete_at(ary, NUM2LONG(pos)); }
Deletes every element of self for which block evaluates
to true
.
a = [ "a", "b", "c" ] a.delete_if {|x| x >= "b" } #=> ["a"]
static VALUE rb_ary_delete_if(ary) VALUE ary; { rb_ary_reject_bang(ary); return ary; }
Calls block once for each element in self, passing that element as a parameter.
a = [ "a", "b", "c" ] a.each {|x| print x, " -- " }
produces:
a -- b -- c --
VALUE rb_ary_each(ary) VALUE ary; { long i; for (i=0; i<RARRAY(ary)->len; i++) { rb_yield(RARRAY(ary)->ptr[i]); } return ary; }
Same as Array#each
, but passes the index of the element
instead of the element itself.
a = [ "a", "b", "c" ] a.each_index {|x| print x, " -- " }
produces:
0 -- 1 -- 2 --
static VALUE rb_ary_each_index(ary) VALUE ary; { long i; for (i=0; i<RARRAY(ary)->len; i++) { rb_yield(LONG2NUM(i)); } return ary; }
Returns true
if self array contains no elements.
[].empty? #=> true
static VALUE rb_ary_empty_p(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return Qtrue; return Qfalse; }
Returns true
if array and other are the same
object, or are both arrays with the same content.
static VALUE rb_ary_eql(ary1, ary2) VALUE ary1, ary2; { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) return Qfalse; if (RARRAY(ary1)->len != RARRAY(ary2)->len) return Qfalse; if (rb_inspecting_p(ary1)) return Qfalse; return rb_protect_inspect(recursive_eql, ary1, ary2); }
Tries to return the element at position index. If the index lies
outside the array, the first form throws an IndexError
exception, the second form returns default, and the third form
returns the value of invoking the block, passing in the index. Negative
values of index count from the end of the array.
a = [ 11, 22, 33, 44 ] a.fetch(1) #=> 22 a.fetch(-1) #=> 44 a.fetch(4, 'cat') #=> "cat" a.fetch(4) { |i| i*i } #=> 16
static VALUE rb_ary_fetch(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY(ary)->len; } if (idx < 0 || RARRAY(ary)->len <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld out of array", idx); } return ifnone; } return RARRAY(ary)->ptr[idx]; }
The first three forms set the selected elements of self (which may
be the entire array) to obj. A start of nil
is equivalent to zero. A length of nil
is equivalent
to self.length. The last three forms fill the array with the value
of the block. The block is passed the absolute index of each element to be
filled.
a = [ "a", "b", "c", "d" ] a.fill("x") #=> ["x", "x", "x", "x"] a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] a.fill("y", 0..1) #=> ["y", "y", "z", "z"] a.fill {|i| i*i} #=> [0, 1, 4, 9] a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
static VALUE rb_ary_fill(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE item, arg1, arg2; long beg = 0, end = 0, len = 0; VALUE *p, *pend; int block_p = Qfalse; if (rb_block_given_p()) { block_p = Qtrue; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY(ary)->len; break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY(ary)->len, 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY(ary)->len + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY(ary)->len - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); if (len < 0) { return ary; } if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { rb_raise(rb_eArgError, "argument too big"); } end = beg + len; if (end > RARRAY(ary)->len) { if (end >= RARRAY(ary)->aux.capa) { REALLOC_N(RARRAY(ary)->ptr, VALUE, end); RARRAY(ary)->aux.capa = end; } rb_mem_clear(RARRAY(ary)->ptr + RARRAY(ary)->len, end - RARRAY(ary)->len); RARRAY(ary)->len = end; } if (block_p) { VALUE v; long i; for (i=beg; i<end; i++) { v = rb_yield(LONG2NUM(i)); if (i>=RARRAY(ary)->len) break; RARRAY(ary)->ptr[i] = v; } } else { p = RARRAY(ary)->ptr + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; }
Returns the first element, or the first n
elements, of the
array. If the array is empty, the first form returns nil
, and
the second form returns an empty array.
a = [ "q", "r", "s", "t" ] a.first #=> "q" a.first(1) #=> ["q"] a.first(3) #=> ["q", "r", "s"]
static VALUE rb_ary_first(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { if (argc == 0) { if (RARRAY(ary)->len == 0) return Qnil; return RARRAY(ary)->ptr[0]; } else { VALUE nv, result; long n, i; rb_scan_args(argc, argv, "01", &nv); n = NUM2LONG(nv); if (n > RARRAY(ary)->len) n = RARRAY(ary)->len; result = rb_ary_new2(n); for (i=0; i<n; i++) { rb_ary_push(result, RARRAY(ary)->ptr[i]); } return result; } }
Returns a new array that is a one-dimensional flattening of this array (recursively). That is, for every element that is an array, extract its elements into the new array.
s = [ 1, 2, 3 ] #=> [1, 2, 3] t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10
static VALUE rb_ary_flatten(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_flatten_bang(ary); return ary; }
Flattens self in place. Returns nil
if no
modifications were made (i.e., array contains no subarrays.)
a = [ 1, 2, [3, [4, 5] ] ] a.flatten! #=> [1, 2, 3, 4, 5] a.flatten! #=> nil a #=> [1, 2, 3, 4, 5]
static VALUE rb_ary_flatten_bang(ary) VALUE ary; { long i = 0; int mod = 0; VALUE memo = Qnil; while (i<RARRAY(ary)->len) { VALUE ary2 = RARRAY(ary)->ptr[i]; VALUE tmp; tmp = rb_check_array_type(ary2); if (!NIL_P(tmp)) { if (NIL_P(memo)) { memo = rb_ary_new(); } i += flatten(ary, i, tmp, memo); mod = 1; } i++; } if (mod == 0) return Qnil; return ary; }
Return true
if this array is frozen (or temporarily frozen
while being sorted).
static VALUE rb_ary_frozen_p(ary) VALUE ary; { if (OBJ_FROZEN(ary)) return Qtrue; if (FL_TEST(ary, ARY_TMPLOCK)) return Qtrue; return Qfalse; }
Compute a hash-code for this array. Two arrays with the same content will
have the same hash code (and will compare using eql?
).
static VALUE rb_ary_hash(ary) VALUE ary; { if (rb_inspecting_p(ary)) { return LONG2FIX(0); } return rb_protect_inspect(recursive_hash, ary, 0); }
Returns true
if the given object is present in self
(that is, if any object ==
anObject),
false
otherwise.
a = [ "a", "b", "c" ] a.include?("b") #=> true a.include?("z") #=> false
VALUE rb_ary_includes(ary, item) VALUE ary; VALUE item; { long i; for (i=0; i<RARRAY(ary)->len; i++) { if (rb_equal(RARRAY(ary)->ptr[i], item)) { return Qtrue; } } return Qfalse; }
Returns the index of the first object in self such that is
==
to obj. Returns nil
if no match is
found.
a = [ "a", "b", "c" ] a.index("b") #=> 1 a.index("z") #=> nil
static VALUE rb_ary_index(ary, val) VALUE ary; VALUE val; { long i; for (i=0; i<RARRAY(ary)->len; i++) { if (rb_equal(RARRAY(ary)->ptr[i], val)) return LONG2NUM(i); } return Qnil; }
Deprecated; use Array#values_at
.
static VALUE rb_ary_indexes(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE new_ary; long i; rb_warn("Array#%s is deprecated; use Array#values_at", rb_id2name(rb_frame_last_func())); new_ary = rb_ary_new2(argc); for (i=0; i<argc; i++) { rb_ary_push(new_ary, rb_ary_aref(1, argv+i, ary)); } return new_ary; }
Deprecated; use Array#values_at
.
static VALUE rb_ary_indexes(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE new_ary; long i; rb_warn("Array#%s is deprecated; use Array#values_at", rb_id2name(rb_frame_last_func())); new_ary = rb_ary_new2(argc); for (i=0; i<argc; i++) { rb_ary_push(new_ary, rb_ary_aref(1, argv+i, ary)); } return new_ary; }
Replaces the contents of self with the contents of other_array, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
static VALUE rb_ary_replace(copy, orig) VALUE copy, orig; { VALUE shared; rb_ary_modify(copy); orig = to_ary(orig); if (copy == orig) return copy; shared = ary_make_shared(orig); if (RARRAY(copy)->ptr && !FL_TEST(copy, ELTS_SHARED)) free(RARRAY(copy)->ptr); RARRAY(copy)->ptr = RARRAY(orig)->ptr; RARRAY(copy)->len = RARRAY(orig)->len; RARRAY(copy)->aux.shared = shared; FL_SET(copy, ELTS_SHARED); return copy; }
Inserts the given values before the element with the given index (which may be negative).
a = %w{ a b c d } a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
static VALUE rb_ary_insert(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long pos; if (argc == 1) return ary; if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (at least 1)"); } pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY(ary)->len; } if (pos < 0) { pos++; } rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; }
Create a printable version of array.
static VALUE rb_ary_inspect(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return rb_str_new2("[]"); if (rb_inspecting_p(ary)) return rb_str_new2("[...]"); return rb_protect_inspect(inspect_ary, ary, 0); }
Returns a string created by converting each element of the array to a string, separated by sep.
[ "a", "b", "c" ].join #=> "abc" [ "a", "b", "c" ].join("-") #=> "a-b-c"
static VALUE rb_ary_join_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); }
Returns the last element(s) of self. If the array is empty, the
first form returns nil
.
[ "w", "x", "y", "z" ].last #=> "z"
static VALUE rb_ary_last(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { if (argc == 0) { if (RARRAY(ary)->len == 0) return Qnil; return RARRAY(ary)->ptr[RARRAY(ary)->len-1]; } else { VALUE nv, result; long n, i; rb_scan_args(argc, argv, "01", &nv); n = NUM2LONG(nv); if (n > RARRAY(ary)->len) n = RARRAY(ary)->len; result = rb_ary_new2(n); for (i=RARRAY(ary)->len-n; n--; i++) { rb_ary_push(result, RARRAY(ary)->ptr[i]); } return result; } }
Returns the number of elements in self. May be zero.
[ 1, 2, 3, 4, 5 ].length #=> 5
static VALUE rb_ary_length(ary) VALUE ary; { return LONG2NUM(RARRAY(ary)->len); }
Invokes block once for each element of self. Creates a
new array containing the values returned by the block. See also
Enumerable#collect
.
a = [ "a", "b", "c", "d" ] a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] a #=> ["a", "b", "c", "d"]
static VALUE rb_ary_collect(ary) VALUE ary; { long i; VALUE collect; if (!rb_block_given_p()) { return rb_ary_new4(RARRAY(ary)->len, RARRAY(ary)->ptr); } collect = rb_ary_new2(RARRAY(ary)->len); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_push(collect, rb_yield(RARRAY(ary)->ptr[i])); } return collect; }
Invokes the block once for each element of self, replacing the
element with the value returned by block. See also
Enumerable#collect
.
a = [ "a", "b", "c", "d" ] a.collect! {|x| x + "!" } a #=> [ "a!", "b!", "c!", "d!" ]
static VALUE rb_ary_collect_bang(ary) VALUE ary; { long i; rb_ary_modify(ary); for (i = 0; i < RARRAY(ary)->len; i++) { rb_ary_store(ary, i, rb_yield(RARRAY(ary)->ptr[i])); } return ary; }
Returns the number of non-nil
elements in self. May
be zero.
[ 1, nil, 3, nil, 5 ].nitems #=> 3
static VALUE rb_ary_nitems(ary) VALUE ary; { long n = 0; VALUE *p, *pend; p = RARRAY(ary)->ptr; pend = p + RARRAY(ary)->len; while (p < pend) { if (!NIL_P(*p)) n++; p++; } return LONG2NUM(n); }
Packs the contents of arr into a binary sequence according to the
directives in aTemplateString (see the table below) Directives
“A,'' “a,'' and “Z'' may be followed by a count,
which gives the width of the resulting field. The remaining directives also
may take a count, indicating the number of array elements to convert. If
the count is an asterisk (“*
''), all remaining array
elements will be converted. Any of the directives
“sSiIlL
'' may be followed by an underscore
(“_
'') to use the underlying platform's native
size for the specified type; otherwise, they use a platform-independent
size. Spaces are ignored in the template string. See also
String#unpack
.
a = [ "a", "b", "c" ] n = [ 65, 66, 67 ] a.pack("A3A3A3") #=> "a b c " a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000" n.pack("ccc") #=> "ABC"
Directives for pack
.
Directive Meaning --------------------------------------------------------------- @ | Moves to absolute position A | ASCII string (space padded, count is width) a | ASCII string (null padded, count is width) B | Bit string (descending bit order) b | Bit string (ascending bit order) C | Unsigned char c | Char D, d | Double-precision float, native format E | Double-precision float, little-endian byte order e | Single-precision float, little-endian byte order F, f | Single-precision float, native format G | Double-precision float, network (big-endian) byte order g | Single-precision float, network (big-endian) byte order H | Hex string (high nibble first) h | Hex string (low nibble first) I | Unsigned integer i | Integer L | Unsigned long l | Long M | Quoted printable, MIME encoding (see RFC2045) m | Base64 encoded string N | Long, network (big-endian) byte order n | Short, network (big-endian) byte-order P | Pointer to a structure (fixed-length string) p | Pointer to a null-terminated string Q, q | 64-bit number S | Unsigned short s | Short U | UTF-8 u | UU-encoded string V | Long, little-endian byte order v | Short, little-endian byte order w | BER-compressed integer\fnm X | Back up a byte x | Null byte Z | Same as ``a'', except that null is added with *
static VALUE pack_pack(ary, fmt) VALUE ary, fmt; { static char *nul10 = "\0\0\0\0\0\0\0\0\0\0"; static char *spc10 = " "; char *p, *pend; VALUE res, from, associates = 0; char type; long items, len, idx, plen; char *ptr; #ifdef NATINT_PACK int natint; /* native integer */ #endif StringValue(fmt); p = RSTRING(fmt)->ptr; pend = p + RSTRING(fmt)->len; res = rb_str_buf_new(0); items = RARRAY(ary)->len; idx = 0; #define TOO_FEW (rb_raise(rb_eArgError, toofew), 0) #define THISFROM (items > 0 ? RARRAY(ary)->ptr[idx] : TOO_FEW) #define NEXTFROM (items-- > 0 ? RARRAY(ary)->ptr[idx++] : TOO_FEW) while (p < pend) { if (RSTRING(fmt)->ptr + RSTRING(fmt)->len != pend) { rb_raise(rb_eRuntimeError, "format string modified"); } type = *p++; /* get data type */ #ifdef NATINT_PACK natint = 0; #endif if (ISSPACE(type)) continue; if (type == '#') { while ((p < pend) && (*p != '\n')) { p++; } continue; } if (*p == '_' || *p == '!') { const char *natstr = "sSiIlL"; if (strchr(natstr, type)) { #ifdef NATINT_PACK natint = 1; #endif p++; } else { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr); } } if (*p == '*') { /* set data length */ len = strchr("@Xxu", type) ? 0 : strchr("PMm", type) ? 1 : items; p++; } else if (ISDIGIT(*p)) { len = strtoul(p, (char**)&p, 10); } else { len = 1; } switch (type) { case 'A': case 'a': case 'Z': case 'B': case 'b': case 'H': case 'h': from = NEXTFROM; if (NIL_P(from)) { ptr = ""; plen = 0; } else { StringValue(from); ptr = RSTRING(from)->ptr; plen = RSTRING(from)->len; OBJ_INFECT(res, from); } if (p[-1] == '*') len = plen; switch (type) { case 'a': /* arbitrary binary string (null padded) */ case 'A': /* ASCII string (space padded) */ case 'Z': /* null terminated ASCII string */ if (plen >= len) { rb_str_buf_cat(res, ptr, len); if (p[-1] == '*' && type == 'Z') rb_str_buf_cat(res, nul10, 1); } else { rb_str_buf_cat(res, ptr, plen); len -= plen; while (len >= 10) { rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10); len -= 10; } rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len); } break; case 'b': /* bit string (ascending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { if (*ptr & 1) byte |= 128; if (i & 7) byte >>= 1; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte >>= 7 - (len & 7); c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'B': /* bit string (descending) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len - plen + 1)/2; len = plen; } for (i=0; i++ < len; ptr++) { byte |= *ptr & 1; if (i & 7) byte <<= 1; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 7) { char c; byte <<= 7 - (len & 7); c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'h': /* hex string (low nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= (((*ptr & 15) + 9) & 15) << 4; else byte |= (*ptr & 15) << 4; if (i & 1) byte >>= 4; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; case 'H': /* hex string (high nibble first) */ { int byte = 0; long i, j = 0; if (len > plen) { j = (len + 1) / 2 - (plen + 1) / 2; len = plen; } for (i=0; i++ < len; ptr++) { if (ISALPHA(*ptr)) byte |= ((*ptr & 15) + 9) & 15; else byte |= *ptr & 15; if (i & 1) byte <<= 4; else { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); byte = 0; } } if (len & 1) { char c = byte & 0xff; rb_str_buf_cat(res, &c, 1); } len = j; goto grow; } break; } break; case 'c': /* signed char */ case 'C': /* unsigned char */ while (len-- > 0) { char c; from = NEXTFROM; c = num2i32(from); rb_str_buf_cat(res, &c, sizeof(char)); } break; case 's': /* signed short */ case 'S': /* unsigned short */ while (len-- > 0) { short s; from = NEXTFROM; s = num2i32(from); rb_str_buf_cat(res, OFF16(&s), NATINT_LEN(short,2)); } break; case 'i': /* signed int */ case 'I': /* unsigned int */ while (len-- > 0) { long i; from = NEXTFROM; i = num2i32(from); rb_str_buf_cat(res, OFF32(&i), NATINT_LEN(int,4)); } break; case 'l': /* signed long */ case 'L': /* unsigned long */ while (len-- > 0) { long l; from = NEXTFROM; l = num2i32(from); rb_str_buf_cat(res, OFF32(&l), NATINT_LEN(long,4)); } break; case 'q': /* signed quad (64bit) int */ case 'Q': /* unsigned quad (64bit) int */ while (len-- > 0) { char tmp[QUAD_SIZE]; from = NEXTFROM; rb_quad_pack(tmp, from); rb_str_buf_cat(res, (char*)&tmp, QUAD_SIZE); } break; case 'n': /* unsigned short (network byte-order) */ while (len-- > 0) { unsigned short s; from = NEXTFROM; s = num2i32(from); s = NATINT_HTONS(s); rb_str_buf_cat(res, OFF16(&s), NATINT_LEN(short,2)); } break; case 'N': /* unsigned long (network byte-order) */ while (len-- > 0) { unsigned long l; from = NEXTFROM; l = num2i32(from); l = NATINT_HTONL(l); rb_str_buf_cat(res, OFF32(&l), NATINT_LEN(long,4)); } break; case 'v': /* unsigned short (VAX byte-order) */ while (len-- > 0) { unsigned short s; from = NEXTFROM; s = num2i32(from); s = NATINT_HTOVS(s); rb_str_buf_cat(res, OFF16(&s), NATINT_LEN(short,2)); } break; case 'V': /* unsigned long (VAX byte-order) */ while (len-- > 0) { unsigned long l; from = NEXTFROM; l = num2i32(from); l = NATINT_HTOVL(l); rb_str_buf_cat(res, OFF32(&l), NATINT_LEN(long,4)); } break; case 'f': /* single precision float in native format */ case 'F': /* ditto */ while (len-- > 0) { float f; from = NEXTFROM; f = RFLOAT(rb_Float(from))->value; rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'e': /* single precision float in VAX byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = RFLOAT(rb_Float(from))->value; f = HTOVF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'E': /* double precision float in VAX byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT(rb_Float(from))->value; d = HTOVD(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'd': /* double precision float in native format */ case 'D': /* ditto */ while (len-- > 0) { double d; from = NEXTFROM; d = RFLOAT(rb_Float(from))->value; rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'g': /* single precision float in network byte-order */ while (len-- > 0) { float f; FLOAT_CONVWITH(ftmp); from = NEXTFROM; f = RFLOAT(rb_Float(from))->value; f = HTONF(f,ftmp); rb_str_buf_cat(res, (char*)&f, sizeof(float)); } break; case 'G': /* double precision float in network byte-order */ while (len-- > 0) { double d; DOUBLE_CONVWITH(dtmp); from = NEXTFROM; d = RFLOAT(rb_Float(from))->value; d = HTOND(d,dtmp); rb_str_buf_cat(res, (char*)&d, sizeof(double)); } break; case 'x': /* null byte */ grow: while (len >= 10) { rb_str_buf_cat(res, nul10, 10); len -= 10; } rb_str_buf_cat(res, nul10, len); break; case 'X': /* back up byte */ shrink: plen = RSTRING(res)->len; if (plen < len) rb_raise(rb_eArgError, "X outside of string"); RSTRING(res)->len = plen - len; RSTRING(res)->ptr[plen - len] = '\0'; break; case '@': /* null fill to absolute position */ len -= RSTRING(res)->len; if (len > 0) goto grow; len = -len; if (len > 0) goto shrink; break; case '%': rb_raise(rb_eArgError, "%% is not supported"); break; case 'U': /* Unicode character */ while (len-- > 0) { long l; char buf[8]; int le; from = NEXTFROM; from = rb_to_int(from); l = NUM2INT(from); if (l < 0) { rb_raise(rb_eRangeError, "pack(U): value out of range"); } le = uv_to_utf8(buf, l); rb_str_buf_cat(res, (char*)buf, le); } break; case 'u': /* uuencoded string */ case 'm': /* base64 encoded string */ from = NEXTFROM; StringValue(from); ptr = RSTRING(from)->ptr; plen = RSTRING(from)->len; if (len <= 2) len = 45; else len = len / 3 * 3; while (plen > 0) { long todo; if (plen > len) todo = len; else todo = plen; encodes(res, ptr, todo, type); plen -= todo; ptr += todo; } break; case 'M': /* quoted-printable encoded string */ from = rb_obj_as_string(NEXTFROM); if (len <= 1) len = 72; qpencode(res, from, len); break; case 'P': /* pointer to packed byte string */ from = THISFROM; if (!NIL_P(from)) { StringValue(from); if (RSTRING(from)->len < len) { rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)", RSTRING(from)->len, len); } } len = 1; /* FALL THROUGH */ case 'p': /* pointer to string */ while (len-- > 0) { char *t; from = NEXTFROM; if (NIL_P(from)) { t = 0; } else { t = StringValuePtr(from); } if (!associates) { associates = rb_ary_new(); } rb_ary_push(associates, from); rb_obj_taint(from); rb_str_buf_cat(res, (char*)&t, sizeof(char*)); } break; case 'w': /* BER compressed integer */ while (len-- > 0) { unsigned long ul; VALUE buf = rb_str_new(0, 0); char c, *bufs, *bufe; from = NEXTFROM; if (TYPE(from) == T_BIGNUM) { VALUE big128 = rb_uint2big(128); while (TYPE(from) == T_BIGNUM) { from = rb_big_divmod(from, big128); c = NUM2INT(RARRAY(from)->ptr[1]) | 0x80; /* mod */ rb_str_buf_cat(buf, &c, sizeof(char)); from = RARRAY(from)->ptr[0]; /* div */ } } { long l = NUM2LONG(from); if (l < 0) { rb_raise(rb_eArgError, "can't compress negative numbers"); } ul = l; } while (ul) { c = ((ul & 0x7f) | 0x80); rb_str_buf_cat(buf, &c, sizeof(char)); ul >>= 7; } if (RSTRING(buf)->len) { bufs = RSTRING(buf)->ptr; bufe = bufs + RSTRING(buf)->len - 1; *bufs &= 0x7f; /* clear continue bit */ while (bufs < bufe) { /* reverse */ c = *bufs; *bufs++ = *bufe; *bufe-- = c; } rb_str_buf_cat(res, RSTRING(buf)->ptr, RSTRING(buf)->len); } else { c = 0; rb_str_buf_cat(res, &c, sizeof(char)); } } break; default: break; } } if (associates) { rb_str_associate(res, associates); } OBJ_INFECT(res, fmt); return res; }
Removes the last element from self and returns it, or
nil
if the array is empty.
a = [ "a", "m", "z" ] a.pop #=> "z" a #=> ["a", "m"]
VALUE rb_ary_pop(ary) VALUE ary; { rb_ary_modify_check(ary); if (RARRAY(ary)->len == 0) return Qnil; if (!FL_TEST(ary, ELTS_SHARED) && RARRAY(ary)->len * 2 < RARRAY(ary)->aux.capa && RARRAY(ary)->aux.capa > ARY_DEFAULT_SIZE) { RARRAY(ary)->aux.capa = RARRAY(ary)->len * 2; REALLOC_N(RARRAY(ary)->ptr, VALUE, RARRAY(ary)->aux.capa); } return RARRAY(ary)->ptr[--RARRAY(ary)->len]; }
Append—Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together.
a = [ "a", "b", "c" ] a.push("d", "e", "f") #=> ["a", "b", "c", "d", "e", "f"]
static VALUE rb_ary_push_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { while (argc--) { rb_ary_push(ary, *argv++); } return ary; }
Searches through the array whose elements are also arrays. Compares
key with the second element of each contained array using
==
. Returns the first contained array that matches. See also
Array#assoc
.
a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] a.rassoc("two") #=> [2, "two"] a.rassoc("four") #=> nil
VALUE rb_ary_rassoc(ary, value) VALUE ary, value; { long i; VALUE v; for (i = 0; i < RARRAY(ary)->len; ++i) { v = RARRAY(ary)->ptr[i]; if (TYPE(v) == T_ARRAY && RARRAY(v)->len > 1 && rb_equal(RARRAY(v)->ptr[1], value)) return v; } return Qnil; }
Returns a new array containing the items in self for which the block is not true.
static VALUE rb_ary_reject(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_reject_bang(ary); return ary; }
Equivalent to Array#delete_if
, deleting elements from
self for which the block evaluates to true, but returns
nil
if no changes were made. Also see
Enumerable#reject
.
static VALUE rb_ary_reject_bang(ary) VALUE ary; { long i1, i2; rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY(ary)->len; i1++) { VALUE v = RARRAY(ary)->ptr[i1]; if (RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY(ary)->len == i2) return Qnil; if (i2 < RARRAY(ary)->len) RARRAY(ary)->len = i2; return ary; }
Replaces the contents of self with the contents of other_array, truncating or expanding if necessary.
a = [ "a", "b", "c", "d", "e" ] a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] a #=> ["x", "y", "z"]
static VALUE rb_ary_replace(copy, orig) VALUE copy, orig; { VALUE shared; rb_ary_modify(copy); orig = to_ary(orig); if (copy == orig) return copy; shared = ary_make_shared(orig); if (RARRAY(copy)->ptr && !FL_TEST(copy, ELTS_SHARED)) free(RARRAY(copy)->ptr); RARRAY(copy)->ptr = RARRAY(orig)->ptr; RARRAY(copy)->len = RARRAY(orig)->len; RARRAY(copy)->aux.shared = shared; FL_SET(copy, ELTS_SHARED); return copy; }
Returns a new array containing self's elements in reverse order.
[ "a", "b", "c" ].reverse #=> ["c", "b", "a"] [ 1 ].reverse #=> [1]
static VALUE rb_ary_reverse_m(ary) VALUE ary; { return rb_ary_reverse(rb_ary_dup(ary)); }
Reverses self in place.
a = [ "a", "b", "c" ] a.reverse! #=> ["c", "b", "a"] a #=> ["c", "b", "a"]
static VALUE rb_ary_reverse_bang(ary) VALUE ary; { return rb_ary_reverse(ary); }
Same as Array#each
, but traverses self in reverse
order.
a = [ "a", "b", "c" ] a.reverse_each {|x| print x, " " }
produces:
c b a
static VALUE rb_ary_reverse_each(ary) VALUE ary; { long len = RARRAY(ary)->len; while (len--) { rb_yield(RARRAY(ary)->ptr[len]); if (RARRAY(ary)->len < len) { len = RARRAY(ary)->len; } } return ary; }
Returns the index of the last object in array ==
to
obj. Returns nil
if no match is found.
a = [ "a", "b", "b", "b", "c" ] a.rindex("b") #=> 3 a.rindex("z") #=> nil
static VALUE rb_ary_rindex(ary, val) VALUE ary; VALUE val; { long i = RARRAY(ary)->len; while (i--) { if (i > RARRAY(ary)->len) { i = RARRAY(ary)->len; continue; } if (rb_equal(RARRAY(ary)->ptr[i], val)) return LONG2NUM(i); } return Qnil; }
Invokes the block passing in successive elements from array,
returning an array containing those elements for which the block returns a
true value (equivalent to Enumerable#select
).
a = %w{ a b c d e f } a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
static VALUE rb_ary_select(ary) VALUE ary; { VALUE result; long i; result = rb_ary_new2(RARRAY(ary)->len); for (i = 0; i < RARRAY(ary)->len; i++) { if (RTEST(rb_yield(RARRAY(ary)->ptr[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; }
Returns the first element of self and removes it (shifting all
other elements down by one). Returns nil
if the array is
empty.
args = [ "-m", "-q", "filename" ] args.shift #=> "-m" args #=> ["-q", "filename"]
VALUE rb_ary_shift(ary) VALUE ary; { VALUE top; rb_ary_modify_check(ary); if (RARRAY(ary)->len == 0) return Qnil; top = RARRAY(ary)->ptr[0]; if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE && !FL_TEST(ary, ELTS_SHARED)) { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1); } else { if (!FL_TEST(ary, ELTS_SHARED)) { RARRAY(ary)->ptr[0] = Qnil; } ary_make_shared(ary); RARRAY(ary)->ptr++; /* shift ptr */ } RARRAY(ary)->len--; return top; }
Element Reference—Returns the element at index, or returns a subarray starting at start and continuing for length elements, or returns a subarray specified by range. Negative indices count backward from the end of the array (-1 is the last element). Returns nil if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ] a[2] + a[0] + a[1] #=> "cab" a[6] #=> nil a[1, 2] #=> [ "b", "c" ] a[1..3] #=> [ "b", "c", "d" ] a[4..7] #=> [ "e" ] a[6..10] #=> nil a[-3, 3] #=> [ "c", "d", "e" ] # special cases a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
VALUE rb_ary_aref(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE arg; long beg, len; if (argc == 2) { if (SYMBOL_P(argv[0])) { rb_raise(rb_eTypeError, "Symbol as array index"); } beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY(ary)->len; } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } if (SYMBOL_P(arg)) { rb_raise(rb_eTypeError, "Symbol as array index"); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY(ary)->len, 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); }
Deletes the element(s) given by an index (optionally with a length) or by a
range. Returns the deleted object, subarray, or nil
if the
index is out of range. Equivalent to:
def slice!(*args) result = self[*args] self[*args] = nil result end a = [ "a", "b", "c" ] a.slice!(1) #=> "b" a #=> ["a", "c"] a.slice!(-1) #=> "c" a #=> ["a"] a.slice!(100) #=> nil a #=> ["a"]
static VALUE rb_ary_slice_bang(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { VALUE arg1, arg2; long pos, len; if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) { pos = NUM2LONG(arg1); len = NUM2LONG(arg2); delete_pos_len: if (pos < 0) { pos = RARRAY(ary)->len + pos; } arg2 = rb_ary_subseq(ary, pos, len); rb_ary_splice(ary, pos, len, Qnil); /* Qnil/rb_ary_new2(0) */ return arg2; } if (!FIXNUM_P(arg1) && rb_range_beg_len(arg1, &pos, &len, RARRAY(ary)->len, 1)) { goto delete_pos_len; } return rb_ary_delete_at(ary, NUM2LONG(arg1)); }
Returns a new array created by sorting self. Comparisons for the
sort will be done using the <=>
operator or using an
optional code block. The block implements a comparison between a
and b, returning -1, 0, or +1. See also
Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ] a.sort #=> ["a", "b", "c", "d", "e"] a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; }
Sorts self. Comparisons for the sort will be done using the
<=>
operator or using an optional code block. The block
implements a comparison between a and b, returning -1, 0,
or +1. See also Enumerable#sort_by
.
a = [ "d", "a", "e", "c", "b" ] a.sort #=> ["a", "b", "c", "d", "e"] a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
VALUE rb_ary_sort_bang(ary) VALUE ary; { rb_ary_modify(ary); if (RARRAY(ary)->len > 1) { FL_SET(ary, ARY_TMPLOCK); /* prohibit modification during sort */ rb_ensure(sort_internal, ary, sort_unlock, ary); } return ary; }
Returns self.
static VALUE rb_ary_to_ary_m(ary) VALUE ary; { return ary; }
Returns self.join
.
[ "a", "e", "i", "o" ].to_s #=> "aeio"
VALUE rb_ary_to_s(ary) VALUE ary; { if (RARRAY(ary)->len == 0) return rb_str_new(0, 0); return rb_ary_join(ary, rb_output_fs); }
Assumes that self is an array of arrays and transposes the rows and columns.
a = [[1,2], [3,4], [5,6]] a.transpose #=> [[1, 3, 5], [2, 4, 6]]
static VALUE rb_ary_transpose(ary) VALUE ary; { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY(ary)->len; if (alen == 0) return rb_ary_dup(ary); for (i=0; i<alen; i++) { tmp = to_ary(rb_ary_elt(ary, i)); if (elen < 0) { /* first element */ elen = RARRAY(tmp)->len; result = rb_ary_new2(elen); for (j=0; j<elen; j++) { rb_ary_store(result, j, rb_ary_new2(alen)); } } else if (elen != RARRAY(tmp)->len) { rb_raise(rb_eIndexError, "element size differs (%d should be %d)", RARRAY(tmp)->len, elen); } for (j=0; j<elen; j++) { rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j)); } } return result; }
Returns a new array by removing duplicate values in self.
a = [ "a", "a", "b", "b", "c" ] a.uniq #=> ["a", "b", "c"]
static VALUE rb_ary_uniq(ary) VALUE ary; { ary = rb_ary_dup(ary); rb_ary_uniq_bang(ary); return ary; }
Removes duplicate elements from self. Returns nil
if
no changes are made (that is, no duplicates are found).
a = [ "a", "a", "b", "b", "c" ] a.uniq! #=> ["a", "b", "c"] b = [ "a", "b", "c" ] b.uniq! #=> nil
static VALUE rb_ary_uniq_bang(ary) VALUE ary; { VALUE hash, v, vv; long i, j; hash = ary_make_hash(ary, 0); if (RARRAY(ary)->len == RHASH(hash)->tbl->num_entries) { return Qnil; } for (i=j=0; i<RARRAY(ary)->len; i++) { v = vv = rb_ary_elt(ary, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_store(ary, j++, v); } } RARRAY(ary)->len = j; return ary; }
Prepends objects to the front of array. other elements up one.
a = [ "b", "c", "d" ] a.unshift("a") #=> ["a", "b", "c", "d"] a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
static VALUE rb_ary_unshift_m(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { long len = RARRAY(ary)->len; if (argc == 0) return ary; /* make rooms by setting the last item */ rb_ary_store(ary, len + argc - 1, Qnil); /* sliding items */ MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len); MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc); return ary; }
Returns an array containing the elements in self corresponding to
the given selector(s). The selectors may be either integer indices or
ranges. See also Array#select
.
a = %w{ a b c d e f } a.values_at(1, 3, 5) a.values_at(1, 3, 5, 7) a.values_at(-1, -3, -5, -7) a.values_at(1..3, 2...5)
static VALUE rb_ary_values_at(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { return rb_values_at(ary, RARRAY(ary)->len, argc, argv, rb_ary_entry); }
Converts any arguments to arrays, then merges elements of self
with corresponding elements from each argument. This generates a sequence
of self.size
n-element arrays, where n is
one more that the count of arguments. If the size of any argument is less
than enumObj.size
, nil
values are supplied. If a
block given, it is invoked for each output array, otherwise an array of
arrays is returned.
a = [ 4, 5, 6 ] b = [ 7, 8, 9 ] [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]] a.zip([1,2],[8]) #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
static VALUE rb_ary_zip(argc, argv, ary) int argc; VALUE *argv; VALUE ary; { int i, j; long len; VALUE result; for (i=0; i<argc; i++) { argv[i] = to_ary(argv[i]); } if (rb_block_given_p()) { for (i=0; i<RARRAY(ary)->len; i++) { VALUE tmp = rb_ary_new2(argc+1); rb_ary_push(tmp, rb_ary_elt(ary, i)); for (j=0; j<argc; j++) { rb_ary_push(tmp, rb_ary_elt(argv[j], i)); } rb_yield(tmp); } return Qnil; } len = RARRAY(ary)->len; result = rb_ary_new2(len); for (i=0; i<len; i++) { VALUE tmp = rb_ary_new2(argc+1); rb_ary_push(tmp, rb_ary_elt(ary, i)); for (j=0; j<argc; j++) { rb_ary_push(tmp, rb_ary_elt(argv[j], i)); } rb_ary_push(result, tmp); } return result; }
Set Union—Returns a new array by joining this array with other_array, removing duplicates.
[ "a", "b", "c" ] | [ "c", "d", "a" ] #=> [ "a", "b", "c", "d" ]
static VALUE rb_ary_or(ary1, ary2) VALUE ary1, ary2; { VALUE hash, ary3; VALUE v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY(ary1)->len+RARRAY(ary2)->len); hash = ary_make_hash(ary1, ary2); for (i=0; i<RARRAY(ary1)->len; i++) { v = vv = rb_ary_elt(ary1, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } for (i=0; i<RARRAY(ary2)->len; i++) { v = vv = rb_ary_elt(ary2, i); if (st_delete(RHASH(hash)->tbl, (st_data_t*)&vv, 0)) { rb_ary_push(ary3, v); } } return ary3; }