The Math
module contains module functions for basic
trigonometric and transcendental functions. See class Float
for a list of constants that define Ruby's floating point accuracy.
Computes the arc cosine of x. Returns 0..PI.
static VALUE math_acos(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = acos(RFLOAT(x)->value); domain_check(d, "acos"); return rb_float_new(d); }
Computes the inverse hyperbolic cosine of x.
static VALUE math_acosh(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = acosh(RFLOAT(x)->value); domain_check(d, "acosh"); return rb_float_new(d); }
Computes the arc sine of x. Returns 0..PI.
static VALUE math_asin(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = asin(RFLOAT(x)->value); domain_check(d, "asin"); return rb_float_new(d); }
Computes the inverse hyperbolic sine of x.
static VALUE math_asinh(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(asinh(RFLOAT(x)->value)); }
Computes the arc tangent of x. Returns -{PI/2} .. {PI/2}.
static VALUE math_atan(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(atan(RFLOAT(x)->value)); }
Computes the arc tangent given y and x. Returns -PI..PI.
static VALUE math_atan2(obj, y, x) VALUE obj, x, y; { Need_Float2(y, x); return rb_float_new(atan2(RFLOAT(y)->value, RFLOAT(x)->value)); }
Computes the inverse hyperbolic tangent of x.
static VALUE math_atanh(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = atanh(RFLOAT(x)->value); domain_check(d, "atanh"); return rb_float_new(d); }
Computes the cosine of x (expressed in radians). Returns -1..1.
static VALUE math_cos(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(cos(RFLOAT(x)->value)); }
Computes the hyperbolic cosine of x (expressed in radians).
static VALUE math_cosh(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(cosh(RFLOAT(x)->value)); }
Calculates the error function of x.
static VALUE math_erf(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(erf(RFLOAT(x)->value)); }
Calculates the complementary error function of x.
static VALUE math_erfc(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(erfc(RFLOAT(x)->value)); }
Returns e**x.
static VALUE math_exp(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(exp(RFLOAT(x)->value)); }
Returns a two-element array containing the normalized fraction (a
Float
) and exponent (a Fixnum
) of
numeric.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] fraction * 2**exponent #=> 1234.0
static VALUE math_frexp(obj, x) VALUE obj, x; { double d; int exp; Need_Float(x); d = frexp(RFLOAT(x)->value, &exp); return rb_assoc_new(rb_float_new(d), INT2NUM(exp)); }
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.
Math.hypot(3, 4) #=> 5.0
static VALUE math_hypot(obj, x, y) VALUE obj, x, y; { Need_Float2(x, y); return rb_float_new(hypot(RFLOAT(x)->value, RFLOAT(y)->value)); }
Returns the value of flt*(2**int).
fraction, exponent = Math.frexp(1234) Math.ldexp(fraction, exponent) #=> 1234.0
static VALUE math_ldexp(obj, x, n) VALUE obj, x, n; { Need_Float(x); return rb_float_new(ldexp(RFLOAT(x)->value, NUM2INT(n))); }
Returns the natural logarithm of numeric.
static VALUE math_log(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = log(RFLOAT(x)->value); domain_check(d, "log"); return rb_float_new(d); }
Returns the base 10 logarithm of numeric.
static VALUE math_log10(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = log10(RFLOAT(x)->value); domain_check(d, "log10"); return rb_float_new(d); }
Computes the sine of x (expressed in radians). Returns -1..1.
static VALUE math_sin(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(sin(RFLOAT(x)->value)); }
Computes the hyperbolic sine of x (expressed in radians).
static VALUE math_sinh(obj, x) VALUE obj, x; { Need_Float(x); return rb_float_new(sinh(RFLOAT(x)->value)); }
Returns the non-negative square root of numeric.
static VALUE math_sqrt(obj, x) VALUE obj, x; { double d; Need_Float(x); errno = 0; d = sqrt(RFLOAT(x)->value); domain_check(d, "sqrt"); return rb_float_new(d); }